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ABSTRACT

In this paper, we present a method that can be used to au-
tomatically classify sleep states in an all-night polysomno-
gram (PSG) to generate a hypnogram for the assesment of
sleep-related disorders. The method is based on ideas of seg-
mentation and classification (clustering) using sleep related
features. Segments are clustered to generate groups of sim-
ilar patterns that can subsequently be labeled as one of the
accepted clinically relevant sleep stages. Each PSG is pro-
cessed independently to generate classes of similar patterns
in an unsupervised manner, thus achieving pseudo-natural
classes that are independent of any classification criterion.
Overall performance as compared to manual scoring of 12
subject is shown to be 61.1%.

1. INTRODUCTION

Multi-modal electrographic measurements that include
electroencephalogram (EEG), electromyogram (EMG),
electrooculograms (EOG) along with other signal types are
known as polysomnograms (PSGs). Such measurements are
used in the diagnosis and treatment of sleep-related com-
plaints. Normal healthy sleep is organized into four ba-
sic biological states (Awake, Light Sleep, Deep Sleep and
Rapid-Eye Movement (REM) Sleep) that typically cycle
every 60-90 minutes. Depending on the criterion adopted,
different stage classification can be derived from these bi-
ological states. Current practice in most laboratories is to
use the stage classification described by Rechtschaffen and
Kales (RK) 1968 [1]. The PSG is generally divided into
epochs of 10, 20, 30 or 60 second (referred to as staging
epochs), which are then visually classified into one of the
RK stages. The resulting temporal evolution of epochs in
terms of stage classification is termed the Hypnogram.
A basic premise to sleep staging the PSG is that a pat-

tern is assumed to exist for a time interval until a new
pattern emerges signaling the change of state. Since the
state of sleep is a continuum from light sleep to deep sleep,
the artificial demarcation of sleep stages by the RK clas-
sification is a simplification. This characterization of sleep
is a methodological concept that attempts to standardize
analysis across reviewers and laboratories. Due to the con-
tinuum of sleep, the exact time of change from one stage
to another is highly subjective and leaves significant room
for interpretation by the scorer. Not surprisingly the same
scorer will score the transitional epochs differently on dif-
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ferent occasions [2]. Many studies have shown inter-scorer
agreement ranging from 67-91% [3, 4]. Visual scoring of two
healthy subjects in 10 laboratories in Japan showed 67% to
75.3% agreement [5]. Most data on inter-scorer agreement
are based on normal subjects.
In addition to being subjective, the visual scoring is very

tedious and time consuming. To deal with this, in the last
30 years, several investigators have addressed the idea of
computer classification of PSGs, see for example [2, 3, 6].
Although some of these studies show acceptable perfor-
mance, they are limited to select populations and none
have found a common place in clinical settings. Much of
this can be attributed to the fact that stage classification
schemes have proven to be too ambiguous to be translated
into mathematical models. It may also be related to the fact
that some of the proposed approaches require threshold and
algorithm adjustments for different patient groups.
In this paper, we present an automatic sleep staging

method that generates pseudo-natural stages, which can be
subsequently classified according to the RK or any other
staging classification criterion preferred by the operator.
Since user input is required in classifying each of the natu-
ral stages, we have termed this approach Computer Assisted
Sleep Staging (CASS).

2. METHOD

Subjects

The presented method was developed using 12 all night
sleep recordings of subject group that included both males
(9) and females (3) with differnt sleep related complaints (8
normals and 4 with different pathologies). The age of the
subjects ranged form 17 to 63 years. For each recording,
the manual staging was done at least 2-3 years prior to the
start of this study.

Computer-Assisted Sleep Staging Method

Unlike some of the methods previously presented in the lit-
erature, our approach analyses the complete PSG and only
then epochs are classified into one of the valid sleep stages.
As suggested by RK criterion, five channels of the PSG are
used, namely: two EEG channels (one central derivation
and one occipital derivation), a sub-mental EMG channel
and two EOG channels (left and right). The stage classifi-
cation depends on the properties of signals in the complete
recording. The method relies on the principles of segmen-
tation and self-organization [7] to cluster the different pat-
terns present in the PSG. Clusters of segments (each cluster
represents a particular pattern type) can then be assigned
a predefined stage. This latter step allows the interactive
participation of the user to customize the staging to their
preferences.
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The overall method can be split into two phases. Phase
A is the preprocessing component where the PSG is decom-
posed into variable duration stationary multi-channel seg-
ments from which various sleep related features are eval-
uated. In phase B, the variable duration segments are
organized into homogeneous clusters (based on the prim-
itive sleep-related features) that are subsequently assigned
a sleep stage to generate the preliminary hypnogram.

Phase A: Segmentation

The five channels of the PSG data are simultaneously
broken-down into quasi-stationary segments. The station-
arity of the segments allows a meaningful estimation of the
features in the next step. Care must be taken to ensure that
the segments are relatively unchanging while long enough to
allow meaningful estimates of features. With this in mind
we have set the minimum duration to be 3 seconds. It was
suggested in [8] that frequency-weighed energy, as evaluated
by the Nonlinear Energy Operator (NLEO), is sensitive to
changes in amplitude and frequency of a signal. We use
this idea to simultaneously segment [9] all five channels of
data. The actual segmentation criterion is generated using
the two EEG and the EMG data in the multi-channel ex-
tension of the adaptive segmentation approach in [9] and
the segmentation boundaries so generated are extended to
include the EOG channels. Segmentation criterion is gen-
erated for each of the three signals as

Gi
nleo(n) =

∣∣∣∣∣

n∑

m=n−N+1

Ψ(m)−
n+N∑

m=n+1

Ψ(m)

∣∣∣∣∣ (1)

where {i = 1, 2, 3} representing the three data channels and
Ψ(n) = x2(n)− x(n− 1)x(n+1), the output of the NLEO.
Final segmentation criterion is based on

Gnleo(n) =

3∑

i=1

Gi
nleo(n) (2)

Peak detection is applied to obtain the segment boundaries
shown in Figure 1.

Phase A: Feature Extraction

Features describing sleep-related attributes are evaluated
for each segment of the PSG. In addition to these features,
we also evaluate the maximum absolute amplitude in each
segment for each type of signals (EEG, EMG and EOG)
and these data are used in an artifact rejection scheme.
Through experimental observations, we selected the fol-

lowing features to represent each PSG segment: ampli-
tude measure, dominant rhythm measure and frequency-
weighted energy (FWE) for each of the two EEG channels
and the EMG channel, presence of spindles in the central
EEG channel, Alpha-Slow-Wave Index (ASI) for the occipi-
tal EEG channel, Theta-Slow-Wave Index (TSI) for the cen-
tral EEG channel and the presence of eye-movement (EM)
in the EOG channels. Each segment is, therefore, parame-
terized by a 13-dimensional feature vector. These features
were experimentally determined to provide a good separa-
tion of different sleep patterns. The following describes each
of these features: Amplitude is defined as the average of the
absolute value of the signal. Dominant Rhythm is deter-
mined as the pole frequency of the estimated second order
autoregressive (AR) model. FWE is defined as the expected
value of the output of the NLEO. Presence of spindles is as-
sessed using the ratio of power in the sigma band (11.5-15

Hz) to total power, relative to the background EEG. ASI
is the ratio of power in the alpha band (8-11 Hz) to the
combined power in delta band (0.5-3.5 Hz) and theta band
(3.5-8.0 Hz) . TSI is the ratio of power in the theta band
to the combined power in delta and alpha bands. Presence
of EMs is determined by the detection of phase reversal of
sufficient amplitude in the left and right lowpass filtered (5
Hz cutoff) EOGs.

Phase B: Clustering

The multi-channel PSG segments are clustered into
groups with similar properties using the feature vectors gen-
erated in Phase A. To do this, an ad hoc iterative self-
organization scheme [7] based on the k-means clustering
algorithm is used. A fundamental problem with k-means
algorithm is the lack of knowledge of the number of pattern
types (clusters) present in the data. This is particularly
problematic with data sets where no clear separation exists
between pattern types. PSG data is one such data type
where the state of sleep is a continuum from light to deep
sleep. In such data types any number of homogeneous clus-
ters of segments can be created by the self-organization,
however the clinical significance may be questionable. The
correct number is dictated by the staging standard as well
as the PSG in question (e.g., a patient may not have SWS
or REM Sleep). An important outcome of this procedure
is that no matter how many clusters are generated, they
are always relative to the PSG in question. The newly cre-
ated clusters are not referenced to a particular standard,
thus leaving the clinician to apply whatever clinical signif-
icance he chooses. In addition to the above problems, self-
organization methods are heavily plagued by starting seeds
and outlier data members.
The idea in our approach is to start with a number of

clusters greater than the number of presumed clusters in the
data, and then to reduce the number of clusters by merg-
ing those close to each other until the desired K clusters
are obtained. The final number of clusters can be selected
depending on the subject and the data. In keeping with
the RK standard, a good choice is 8, as it accounts for the
six key RK sleep stages and two for redundancies (e.g., two
types of stage 2 sleep or cluster splitting).
To enhance performance of self-organization, the data are

preprocessed by removing artifact-contaminated segments
prior to clustering. The artifact (or outlier) segment re-
moval strategy is a multi-layered one that is applied at sev-
eral stages of the clustering scheme.

Feature Conditioning

Prior to clustering the presence of EM is transformed into
2 types: EMs in the presence of high alpha activity (ASI
greater than unity) and those in the presence of low alpha
activity (ASI less than unity). The argument being that
alpha activity in Wake state is higher than in REM sleep.
Segment features used for clustering are a mixture of dif-

ferent types and have different scales. Prior to clustering,
it is therefore necessary that all the features are scaled such
that the weighting of any one feature does not play a more
important role than any other. Each feature is normalized
with respect to the maximum feature value.

Artifact Rejection

The first level of artifact rejection is applied prior to clus-
tering. All segments in which the maximum absolute ampli-
tude of any of the three signal types exceeds a preset thresh-
old are considered to be artifact contaminated and rejected
from further consideration. In our prototype, we have used



300, 325 and 200 µVs for the EOG, EMG and EEG data
types, respectively. In addition to the amplitude threshold,
a technique based on the distribution of the FWE of the
EMG and EEG signals is used to identify artifact contami-
nated segments (see Agarwal et al. [7] for details). This is
based on the assumption that the FWE of the valid EEG is
concentrated in some subspace of the FWE feature space.
Segments contaminated by artifact contain higher frequen-
cies and amplitudes and are on the periphery or beyond
the EEG (and EMG) subspace of FWE. Since most of the
segments throughout the night do not contain artifact, they
will form a denser concentration than the artifact contam-
inated segments. This fact is used to separate segments in
which the EEG or EMG is artifact contaminated, thereby
achieving artifact rejection.

Phase B: Stage Assignment

Once the segments have been clustered, the user pref-
erence of stage classification is incorporated into the algo-
rithm by labeling each cluster with a sleep-stage. This is
accomplished in two steps. First, one of the K cluster la-
bels is assigned to each staging epoch depending on which
type of pattern (defined by the segment clusters) occupies
the largest fraction of the epoch. This procedure imparts
segment cluster information onto the staging epochs and
generates clusters of staging epochs. By grouping epochs
with same cluster labels, we have essentially translated the
cluster of segments based on primitive features to cluster
of epochs based on these same features. Second, it is nec-
essary to assign a clinically relevant stage label (according
to RK or any other classification) to each cluster of staging
epochs thus generating the preliminary hypnogram. This is
done by selecting five (or fewer) representative epochs from
each cluster and asking the operator to score them. The re-
sults are used to score all remaining staging epochs within
each cluster. By this process, we have accommodated the
operator’s preference in staging.

3. RESULTS/DISCUSSION

The performance was assesed on an epoch by epoch ba-
sis. In its current state the auto staging does not differ-
entiate between stages 3 and 4. Therefore, in the perfor-
mance assessment, stages 3 and 4 of the manual scoring
were combined to yield a single Slow-Wave Sleep (SWS)
state. Overall agreement between automatic staging and
manual staging was 61.1 % for the 12 subjects.
Figure 2 shows the results of auto scoring at various

stages of the method. Figure 2a shows the temporal evolu-
tion of segments in each cluster. Note that segments within
each cluster are generally confined to cohesive blocks of
time. The transition from one cluster to another appears
to be relatively sharp indicating possible changes of state.
The temporal overlap of some cluster types indicates two
possibilites. First, the clusters that overlap may represent
similar sleep state (i.e. a sleep state has been split into
two or more clusters). Due to the limited graphical resolu-
tion this will appear as multiple pattern types within the
same time period. Second, two patterns types may vas-
cillate within a block of time period. An example of this
is REM period where subperiods may look very much like
stage 2 sleep without spindles. Figure 2b shows the tem-
poral evolution of staging epochs in terms of the cluster
number to which they belong. This is similar to Figure
2a except that it shows the temporal evolution of differ-
ent PSG activities in terms of staging epochs. The dashed
vertical lines indicate the transition of the epochs between

clusters. The segments have been grouped to form staging
epochs. Each epoch clusters has been labeled (left of the
figure) as one of the valid RK stages. Note Movement stage
is not used. Note also that 4 of the 8 clusters are labeled
stage 2, suggesting either there exist variants of stage 2 or
there is cluster splitting. Figure 2c shows the resulting auto
generated hypnogram by merging clusters with same stage
labels. Figure 2d shows the manually staged hypnogram.
An epoch-by-epoch comparison of the computer generated
and the manually staged hypnogram yields a 75.4% agree-
ment. More importantly, the profile of the computer gener-
ated hynogram appears to be very similar to the manually
staged.
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